ジェイテックコーポレーション【3446】

直近本決算の有報
株価:9月18日時点

1年高値3,950 円
1年安値1,739 円
出来高9,100 株
市場マザーズ
業種金属製品
会計日本
EV/EBITDA59.2 倍
PBR7.6 倍
PSR・会予13.0 倍
ROA0.6 %
ROICN/A
βN/A
決算6月末
設立日1993/12/21
上場日2018/2/28
配当・会予0 円
配当性向0.0 %
PEGレシオ-42.8 倍
売上高(百万円)&収益性(%)
売上5y CAGR・予想:15.9 %
利益(百万円)
営利5y CAGR・予想:6.8 %
純利5y CAGR・予想:6.0 %
EPS(円) BPS(円)
配当(円)
健全性(%、倍)
セグメント別売上
セグメント別営業利益
セグメント別利益率
会社の詳細

3【事業の内容】

当社は、世の中にないオンリーワンの技術により、広く社会に貢献することを経営理念として、創薬、医療技術分野におけるイノベーションの推進に貢献するシステムの開発、販売を推進してまいりました。

当社は、『オプティカル事業』と『ライフサイエンス・機器開発事業』の2つのセグメントを有しております。

『オプティカル事業』の主要製品は放射光及びX線自由電子レーザー施設向けX線ナノ集光ミラー及び各種ミラーであります。

当事業では、兵庫県の播磨科学公園都市内に位置する大型放射光施設「SPring-8」<注1>や、「SPring-8」に隣接して建設されましたX線自由電子レーザー施設「SACLA」<注2>で代表される国内外の放射光施設やX線自由電子レーザー施設のビームライン(実験ハッチ)で用いられ、放射X線を利用した基礎研究や産業利用など幅広い研究のための高度化された分析システムに使用されるX線ナノ集光ミラーや各種ミラーを中心とした超高精度の表面形状ミラーをオーダーメードで製造・販売しております。

『ライフサイエンス・機器開発事業』の主要製品は各種自動細胞培養装置、その他各種自動化装置であります。

当事業では、創業当初から大手企業と各種自動細胞培養装置を共同開発し、製造・販売してまいりました。また医療・バイオ分野だけでなく半導体分野、化学・繊維分野、印刷分野等の様々な分野において研究機関や企業からの委託開発や独自製品を開発・製造・販売してまいりました。

 

(1) オプティカル事業

当事業では、兵庫県の大型放射光施設「SPring-8」やX線自由電子レーザー施設「SACLA」等、国内外の先端的放射光施設やX線自由電子レーザー施設等で使われる反射表面の形状精度が1ナノメートル(10億分の1メートル、以下nmと表記。)以下の超高精度のX線ナノ集光ミラー等をユーザーに合わせて設計し、製造・販売しております。

本ミラーは放射光X線をnmスケールまで絞ることが可能で、それにより分析精度の向上、測定時間の短縮や極微小領域の分析等を実現し、放射光の優れた特性を発揮させることが可能になります。

 

(a) 放射光施設及びX線自由電子レーザー施設向けX線ナノ集光ミラーの技術的背景

「SPring-8」や「SACLA」で利用されている放射光は、電子銃から放出した電子を光とほぼ等しい速度まで加速した後に、磁力によってその電子の進行方向を曲げたときに発生し、赤外線、可視光線、紫外線、軟X線(波長が比較的長い、薄い空気層でも吸収されるような透過力の弱いX線)、硬X線(エネルギーが高く透過力の強いX線)等の色々な種類の光で構成されております。この放射光に含まれているX線は、大学の研究室や病院のレントゲン室などにある検査装置等で発生するX線と比べ、10億倍以上明るく、X線の発生方法の違いにより発散せずに遠方まで進む特性を有するなど優れた性質を有し、例えば物質の種類や構造、性質を詳しく分析することができ、物質科学、生命科学、医学など様々な分野で幅広く利用され、産業技術の発展にも貢献しております。

従来、放射光施設などにおいて硬X線集光を行うためには、ゾーンプレート<注3>を用いた光学系<注4>では集光強度、集光径<注5>に限界があり、後に普及したKB型光学ミラー<注6>でも、研削技術がネックとなり、研究者が期待する精度のミラーを製作することが不可能でありましたが、2005年に大阪大学で開発された2つの超平坦化基盤技術により、「SPring-8」の理化学研究所・播磨研究所と、ナノメートルオーダー<注7>の非球面形状精度と表面粗さを両立したKB型光学ミラーを共同研究し、世界で初めて硬X線を回折限界<注8>まで集光(最小集光径36nm×48nm)することに成功しました。

その2つの超平坦化基盤技術とは、原子レベルで平坦な完全表面(任意形状でありながら、高い形状精度を持つ、原子レベルで平坦な表面であり、表面層にも原子配列の乱れが全く無い表面)を実現するナノ加工技術EEM(Elastic Emission Machining)と表面形状をナノメートル精度で計測可能なナノ計測技術RADSI(Relative Angle Determinable Stitching Interferometry)及びMSI(Micro Stitching Interferometry)といい、この技術によって開発したミラーは、“KB Nanofocus mirror”として従来にない性能を有し、国内外の研究者から商品化が望まれておりました。

そこで当社ではこのKB型光学ミラー(以下「X線ナノ集光ミラー」という。)を、大阪大学のナノ加工技術EEMとナノ計測技術RADSI及びMSIをもとに、当社が創業時から培ってきた機器開発の技術を用いてこれらミラー製造に関わる各種の自動化装置を開発し、実用化に成功いたしました。

2006年からは本技術により製作したミラーを“OsakaMirror”(2009年商標登録済)と名付け販売を開始し、世界の先端的な放射光施設やX線自由電子レーザー施設の研究者から評価を得て、数多くの研究施設に納入しております。

 

(b) ナノ加工技術EEM(Elastic Emission Machining)について

EEMは大阪大学森勇藏名誉教授らによって研究開発されたナノ加工法であり、従来の研磨や研削とは全く異なる加工技術で、化学反応を利用した加工法であります。このEEMによる加工で、加工物と反応性のある微細粉末粒子を超純水の流れによって加工物表面に供給し、このとき加工物表面との間で化学反応が生じ、引き続き超純水の流れから受ける抵抗によって、粉末粒子が加工物表面から取り除かれる際、加工物表面の原子が粉末粒子によって持ち去られることにより加工が進みます。またこの加工法は初期の材料表面に存在するマイクロメートル単位以下の凹凸の凸部だけを選択的に研磨することを特徴としており、最終的には凹凸の高さは1nm以下(原子数個分)となり、現在世界で最も凹凸の無い面を作り出すことに成功した加工法であり、原子レベルで平坦な表面を作製することができます。(図1参照)

また、通常の一般的に行われている表面加工技術であるエッチングやCMP(Chemical Mechanical Polishing)は薬品を用いますが、EEMは薬品を用いないため、環境にやさしい加工技術といえます。

(画像は省略されました)

図1.EEM原理

 

下の写真はシリコンウェーハの表面をEEMしたときの加工表面をSTM(走査型トンネル顕微鏡)で観察したもので、理想平面に対してのPV値(最大-最小値)が2.4nm(図2.(a))から0.5nm(図2.(b))まで改善されています。また原子層ごとに色分けをした結果、95%が3原子層で構成される、世界トップクラスの平坦な加工であることが実証されています。図2.(c)はEEM加工後の面で、各輝点は原子1つに対応しており、機械的歪み(物体が引張り・圧縮・せん断等の外力によって物体の変形状態を表す尺度で、物体の基準(初期)状態の単位長さあたりに物体内の物質点がどれだけ変位するかを示す。)が一切なく原子配列を乱さず40×40nmの95%が3原子層で構成されている、世界トップクラスで平坦な加工法であることを実証しています(「Hard X-ray Diffraction-Limited Nanofocusing with Kirkpatrick-Baez Mirrors」Hidekazu Mimura, Satoshi Matsuyama, Hirokazu Yumoto, Hideki Hara, Kazuya Yamamura, Yasuhisa Sano, Masufumi Shibahara, Katsuyoshi Endo, Yuzo Mori, Yoshinori Nishino, Kenji Tamasaku, Makina Yabashi, Tetsuya Ishikawa, Kazuto Yamauchi /Japanese Journal of Applied Physics Vol.44,No.18,2005,pp.L539-L542 )。

(画像は省略されました)

(画像は省略されました)

PV2.4nm

PV0.5nm

 

(a)超LSI用シリコンウェーハ表面

(b)EEM後の表面

(c)測定領域40×40nm

図2.STMによるEEM表面の観察

 

当社では本EEM技術の基本特許に関する特許実施権を取得しており、また関連特許は全て自社で保有し、更に各種EEM加工装置は全て内製化しており、競合メーカーとの差別化を図っております。

 

(c) ナノ計測技術RADSI(Relative Angle Determinable Stitching Interferometer)及びMSI(Microstitching

 Interferometer)

大阪大学山内和人教授らによって研究開発された表面形状ナノ計測法であります。このMSIとはマイケルソン型位相シフト干渉計<注9>で微小領域を計測することで表面粗さ(高周波成分。表面粗さとなるエラーは高周波として捉えられ、反射率に影響する。)を評価し、スティッチング機構(ステージを移動)により、大面積をナノ形状計測する技術です。

ただしMSIだけでは本ミラーのような非球面形状ではステージの機構に起因する誤差により、大きなうねり(低周波成分。ミラーの形状のエラーは低周波として捉えられ、集光率に影響する。)を計測することは不可能です。そこでフィゾー型干渉計<注10>に独自のスティチング機構(連続した測定表面を計測する仕組み。)を開発し、測定表面を徐々に傾けて取得した各計測データをつなぎ合わせることにより形状データを算出する本計測技術RADSIを開発し、非球面形状でも低周波成分の形状計測をすることを可能にしました。(図3参照)

その結果、それぞれの計測データ(MSIの高周波成分とRADSIの低周波成分)を組合せ、非球面ミラー全体の形状の測定において、全空間波長の計測誤差を最小限に抑えてnm精度で形状計測することに成功しました。(図4参照)

RADSI

MSI

(画像は省略されました)

(画像は省略されました)

長い空間波長領域(低周波成分)でPV1nmの測定
再現性がある→問題点:高周波成分の誤差がある。

数mm以下の空間波長領域(高周波成分)でPV1nmの測定再現性がある→問題点:一度に大面積の測定ができない。

図3.表面形状ナノ計測技術MSI及びRADSI

 

(画像は省略されました)

全空間波長の形状をPV1nm以下の精度で計測可能。

図4. 組み合わせ形状データ

 

当社はこの計測技術を用いた自動化装置も大阪大学との共同開発により、EEM装置と同様に内製化し、事業化を加速することができました。

RADSI及びMSI技術に関連する特許は全て大阪大学との共同出願であり、既に数多くの特許を取得しております。

さらに現在、当社では需要の高まっている長尺ミラー用のRADSI及びMSIを独自に開発し、1m長の長尺の非球面形状の反射ミラーの形状の測定においても、計測誤差をナノメートルオーダーで形状計測が可能となりました。

 

(d) 事業の概要

当社が販売するX線ナノ集光ミラーは兵庫県の大型放射光施設「SPring-8」やX線自由電子レーザー施設「SACLA」等、国内外の先端的放射光施設やX線自由電子レーザー施設等で使われ、顧客は主に国内外の国立の研究機関や大学の研究者であり、国の研究予算により、年々積極的に新しい研究が提案され、新しい光学系の構築がなされております。

最近、放射光施設やX線自由電子レーザー施設では、物理、化学、生物などの基礎科学研究分野から、医学利用、医薬品設計、材料評価などの応用分野に加えて産業利用ニーズも高まりをみせ、放射光利用者は年々増大しております。これに伴い、より小さな試料やより高い空間あるいはエネルギー分解能(放射線のエネルギー測定の精度を表す指標。)での分析が求められ、光を扱う技術への高度化の需要は世界レベルで高まっており、当社の“OsakaMirror”の需要が拡大しております。

特に最近、ヨーロッパ、アメリカや中国、韓国、台湾など東アジア、ブラジルなど世界各国の放射光施設では現在主流の第3世代<注11>から第4世代<注12>へのバージョンアップや、新たに第4世代の建設が多数計画されており、従来より高輝度化が進み、測定時間が1/10~1/100程度に短縮されると見込まれており、より高精度なミラーや多機能なミラーが求められ、当社への受注も急増しております。

例えば「SPring-8」では60本近いビームライン(放射光施設には放射光の取り出し口が複数設けられており、そこから取り出した放射光を用いて様々な実験や分析が行われています。この取り出し口から放射光を取り込むラインをビームラインという。)が稼働しており、それぞれのビームラインの川下でのX線ナノ集光ミラーの需要がありますが、ビームラインの川中、川上でも放射光の高調波カットや任意の波長を選択するための分光用の回折格子(グレーティングミラー。放射光施設で生み出される光は、波長の長い赤外線から波長の短いX線まで様々な波長の光が混在しており、その光から軟X線など特定の波長だけを取り出す(分光する)ために用いられる。)など2枚~8枚程度の様々な光学ミラーが使われております(すなわち集光ミラーと合わせて4枚~10枚の光学ミラーが使われている)。その各種ミラーもX線ナノ集光ミラー同様に高精度化が要求されており、当社ではそれら需要にも積極的に応えてまいりました。

当社では常に海外の競合メーカーに対する技術的な地位を保持するために加工・計測に関する製造設備の高度化を図り、また次世代のミラーや様々な自由曲面ミラーの製品化のための研究開発を進めております。

2017年8月に兵庫県最先端技術研究事業(COEプログラム)に採択され、大阪大学、理化学研究所及び高輝度光科学研究センターと「回折限界下で集光径可変な次世代高精度集光ミラーの製造技術の開発」を実施し、次世代施設向けの集光径可変の次世代高精度集光ミラーDM-150<注13>の商品化に成功し、2018年4月にまず波面補償用の形状可変ミラーとして試作販売を開始し、SSRF(中国、上海放射光施設)やAPS(アメリカ、アルゴンヌ国立研究所)から受注し、評価テストを開始しております。今後は本ミラーを組み合わせた集光径可変の次世代高精度集光ミラーシステム<注14>として商品展開を図ります。

本X線ナノ集光ミラーはカスタムメイドであり、これを使用する研究者の実験条件により、その都度形状設計が必要となります。当社は長年大阪大学、理化学研究所及び高輝度光科学研究センターとの共同研究を推進し、その研究を通してX線ミラーの設計のノウハウを習得したことにより、顧客である研究者に対して最適なX線ミラーの提案が可能となり、今では海外の競合企業に対して差別化が図れております。

製造手順は、X線ミラーを受注してから形状設計を実施、承認後、原料となる単結晶シリコンなどのインゴットを調達し、まず外部の協力企業において目標形状に対して機械研磨、研削加工などで形状前加工(近似加工)を実施します。その後当社で目標形状に対してnm精度までナノ加工EEMとナノ計測RADSI及びMSIを繰り返し、製品を完成させます。また必要に応じてX線ミラーの反射表面に金、ロジウムやB4Cなどを均一にコーティングします。

販売体制としては、顧客の大半が国立研究機関や大学などであるため入札になる場合が多く、基本的には直接販売を行っております。また放射光施設のビームラインをまとめてプラント業者に発注するケースもあり、その工事受注業者からの発注になる場合もあります。

さらにこれら独自のナノ加工・計測技術を用いて、各種X線光学素子<注15>を放射光施設以外の産業分野、例えば半導体、医療及び宇宙分野等へ製品展開を図るために各分野の有力企業と共同開発を積極的に進めており、試作開発を推進し、成果をあげつつあります。

 

 

〔事業系統図〕

以上述べた事項を事業系統図によって示すと次のとおりであります。

(画像は省略されました)

図5.オプティカル事業系統図

 

なお、2019年6月期のオプティカル事業の顧客属性別の売上高(売上高比率)については、大学が6,009千円(0.5%)、企業が48,490千円(4.1%)、公的研究機関が1,132,033千円(95.4%)となっております。

(2) ライフサイエンス・機器開発事業

(a) 事業の概要

当事業では、創業当初は創薬スクリーニング<注16>に関連する細胞培養<注17>の自動化から、再生医療に関連する細胞培養まで様々な細胞操作を自動化した各種自動細胞培養装置やiPS細胞<注18>用の各種細胞培養装置の開発・製造・販売を推進してまいりました。

当社の自動細胞培養装置は、培地と呼ばれる細胞増殖に欠かせない栄養分を交換したり、細胞を培養したり、培地を保存したりする様々な機能をオールインワンにまとめた全自動化のシステムであることが特長で、この医療及びバイオ分野では顧客の希望する内容が多様化しており、顧客ごとに独自の操作手順を提案し、カスタムメイドで自動化装置の製造・販売を行ってまいりました。

しかしiPS細胞の出現により高価な自動細胞培養装置に対して広く研究者に使っていただける量産汎用タイプを目指し、iPSアカデミアジャパン株式会社(現株式会社iPSポータル)とiPS細胞専用の自動細胞培養装置の開発に成功し、2012年秋に京都大学の山中伸弥教授がノーベル生理学・医学賞を受賞した直後、タイムリーに販売することができました。また長年産業技術総合研究所と浮遊培養(培地内を細胞が浮遊状態で増殖する培養方法)の一種である独自の3次元浮遊培養技術「Cell Float®」技術<注19>を用いた3次元培養<注20>装置をコアにした再生医療向け3次元細胞培養システムの研究開発を推進し、また再生医療や創薬へ製品展開を図っております。

尚、当事業では医療及びバイオ分野の独自の製品の製造、販売だけでなく、当社X線ミラーを用いた集光技術やナノ加工技術に関する機器開発、委託開発業務及びOEM生産等も実施しております。当事業年度は従来からのOEM製品のロット生産、当社X線集光ミラー用の集光ユニットの製作及び大手メーカーからの委託開発によるナノ加工装置の試作を行い、納品いたしました。

当事業では、ユーザーへの提案から開発・設計は自社で実施しておりますが、その後の製造に関しては外部の協力会社に委託するファブレス化を進めております。

販売体制としては、直接販売のほか販売チャンネルとして広く販売代理店を活用しております。

また、当社の独自のCell Float®技術の認知度向上のためにCell Float®研究会を発足し、さらに、細胞培養に関わる展示会や学会において積極的に企業展示をするだけでなく、培養技術に関する成果発表を積極的に行っております。

 

事業系統図

以上述べた事項を事業系統図によって示すと次のとおりであります。

(画像は省略されました)

図6.ライフサイエンス・機器開発事業系統図

 

なお、2019年6月期のライフサイエンス・機器開発事業の顧客属性別の売上高(売上高比率)については、大学が43千円(0.0%)、企業が88,982千円(89.9%)、公的研究機関が10,000千円(10.1%)となっております。

(b) 研究開発

当社は、再生医療分野や創薬スクリーニング分野への展開を図るため、下記のような研究開発に取組んでおり、再生医療や創薬スクリーニング向けの各種細胞培養に関連する製品開発に注力しております。

また、医療及びバイオ分野にとらわれず、オプティカル事業の製造技術や様々な分野の企業からの委託開発の受注を目指し、当社が保有するナノ加工・計測技術等の実用化開発も推進しております。

 

・再生医療向け細胞培養装置の研究開発について

当社は、長年産業技術総合研究所と研究開発を進めてまいりました独自の3次元浮遊培養技術「Cell Float®」を用い、京浜臨海部ライフイノベーション国際戦略総合特区事業(2012年度課題解決型医療機器等開発事業、2014、2015年度医工連携事業化推進事業)として、横浜市立大学、産業技術総合研究所、大阪大学とともに「再生医療等に用いるヒト軟骨デバイスの実用化のための3次元細胞培養システムの開発・事業化」に関する共同研究を推進し、2016年度からは国立研究開発法人日本医療研究開発機構(AMED)の産学連携医療イノベーション創出プログラム(ACT-M)に採択され(「臨床試験を目指す3次元細胞培養システムを用いた革新的ヒト弾性軟骨デバイス創出」)、横浜市立大学及び神奈川県立こども医療センターと臨床研究を開始しております。(「第2 事業の状況 5研究開発活動」を参照。)

本事業では再生医療等に用いる数十mm以上の大きさの弾性軟骨<注21>の大型組織細胞の培養を可能とする3次元細胞培養システムを開発し、製品化の目途を立てており、まずは第一弾として難治性の鼻咽腔閉鎖不全症を対象疾患として来年以降の医師主導の治験の準備を進めております。さらにこの弾性軟骨の大型化に伴い、膝・耳・鼻等対象疾患の拡大が期待できます。

また、第2弾として大阪大学医学部と心筋細胞の培養に当社独自の3次元浮遊培養技術「Cell Float®」を導入し、従来培養方法と比べ優位性が証明されました。今後臨床研究への導入を目指していきます。

ところで、本研究を通じて、いろいろなノウハウを習得しており、当社の再生医療向け自動細胞培養装置や消耗品を販売するだけではなく、ユーザーとなる再生医療会社に対して本システムの運営に関してのノウハウを提供するコンサルティング・支援サービス業務なども含むトータルシステムの販売を目指しております。

 

・創薬スクリーニング用細胞培養装置の研究開発について

経済産業省の「2014年度中小企業経営支援等対策費補助金(戦略的基盤技術高度化支援事業)」(2014~2016年度)に採択され、産業技術総合研究所、大阪大学と「iPS細胞等の3次元大量培養技術の開発」の共同研究を推進し、独自の3次元培養技術であるCell Float技術を応用し、創薬スクリーニングの毒性試験等に用いる3次元の肝臓細胞組織等を均質で大量に培養可能な大量培養装置や、この大量の3次元組織細胞を用いた創薬スクリーニング用自動化装置の開発に成功しました。

当社では本装置を用い、肝臓細胞そのもののスクリーニングに向けた細胞特性の評価や品質安定性の評価が行える体制の構築も進め、これら3次元培養した肝臓細胞をより安価に提供する培養プロセスの開発に努め、製薬会社等が行っております創薬開発プロセスにおける動物を用いたスクリーニング工程との置き換え並びにスクリーニングの信頼性の向上を目標としたシステムの研究開発を行っております。

 

・iPS細胞のための培養技術の研究開発について

このCell Float技術をもとにしたiPS細胞等の未分化維持培養のためのシステムである回転浮遊培養装置「CellPet 3D-iPS」<注22>やスフェロイド<注23>を均一な小さな組織に分散する小片化装置「CellPet FT」<注24>などの製品化に成功しました。さらにiPS細胞等の大量培養のための技術開発も推進し、昨年度から戦略的基盤技術高度化支援事業(2017~2019年度)に採択され、大阪大学医学部及び工学部と「iPS細胞等幹細胞の高効率な継代作業を実現した3次元大量継代培養自動化技術の実用化開発」のための共同研究を進めており、iPS大量培養システム「CellMeisterR® 3D-iPS」<注25>を開発し、今後大阪大学医学部においてフィールドテストを実施いたします

また近年オルガノイド(ミニ臓器)<注26>を作り出す技術は急速に進歩しつつありますが、当社の「CellPet FT®」を使って、細胞を小片化すると均一な組織の細胞ができ、創薬スクリーニングで有効であると評価されており、様々なオルガノイドに適用するための開発を進め、新しくオルガノイド培養専用の「CellPet® CUBE」<注27>を開発しました

 

・ナノ加工技術の実用化開発について

当社のオプティカル製造に関する技術フォローだけでなく、独自の機器開発や委託開発業務を推進するために技術開発を進めており、当事業年度は、プラズマCVMなどナノ加工技術に関する実用化開発を推進しました。(「第2 事業の状況 5研究開発活動」を参照。)

 

 

・細胞培養センターについて

2016年4月から大阪大学吹田キャンパス内の産学共創本部B棟内に、大学や企業と獲得した競争的資金で進める共同研究を推進するために、さらに当社で開発を進める各種バイオ関連機器の上市(新製品を市販すること)に向けた培養評価や培養技術の開発だけでなく、その他大学や企業と様々な培養技術に関する共同研究を積極的に実施可能なオープンイノベーションの場とすることを目的に、細胞培養センターを設け、現在、大阪大学及び横浜市立大学との再生医療を目指した共同研究を推進しており、さらに、複数の企業と培養に関する新製品開発を目指して共同研究を実施しております。(「第2 事業の状況 5研究開発活動」を参照。)

 

注1:大型放射光施設「SPring-8」(Super Photon Ring-8 GeV)

「SPring-8」とは、兵庫県の播磨科学公園都市にある世界最高性能の放射光を生み出すことができる大型放射光施設です。放射光とは、電子を光とほぼ等しい速度まで加速し、磁石によって進行方向を曲げた時に発生する、細く強力な電磁波のことです。「SPring-8」では、この放射光を用いてナノテクノロジー、バイオテクノロジーから産業利用まで幅広い研究が行われています。「SPring-8」の名前はSuper Photon ring-8 GeV(80億電子ボルト)に由来しています。

「SPring-8」は国内外の産学官の研究者等に開かれた共同利用施設であり、1997年から放射光を大学、公的研究機関や企業等のユーザーに提供しています。課題申請などの手続きを行い、採択されれば、誰でも利用することができます。

「SPring-8」の施設者は理化学研究所であり、「SPring-8」の運転・維持管理、並びに利用促進業務を高輝度光科学研究センターが行っています(図A参照)。

 

注2:X線自由電子レーザー施設「SACLA(SPring-8 Angstrom Compact Free Electron Laser)」

2006年3月に策定された第3期科学技術基本計画(2006年3月28日閣議決定)において国家基幹技術の一つとして選定されたX線自由電子レーザー施設として、2006年度から理化学研究所と「SPring-8」を運営する高輝度光科学研究センターが共同で施設の建設・整備を行い、2011年3月に完成、0.063nm(0.63Å(オングストローム:微小な長さを表すのに用いられる単位。1Å=0.1nm))の世界最短波長のX線レーザー生成に成功した施設であり、2012年3月7日より供用運転を開始しています(図A参照)。

 

(画像は省略されました)

図A 大型放射光施設「SPring-8」、X線自由電子レーザー施設「SACLA」

 

注3:ゾーンプレート

物質透過率の高いX線では、物質毎の屈折率が変わらないため、レンズは役に立ちません。そこで、ゾーンプレートと呼ばれる光の通るところと通らないところが交互に並ぶ同心円状のものを用い、ピンホールのように光の回折と干渉を利用した集光方法があります。

 

注4:光学系

光学系とは、光の反射や屈折などの性質を利用して物体の像をつくったり、集光したりする部品や装置の総称のことを示すものです。部品としてはミラーやレンズが当たります。

 

注5:集光強度、集光径

集光強度とは、レンズ等を利用して光を1点に集めた場所(集光点)の明るさのことを示すものです。また、先に述べました集光点が物理的に理想的な集光をしたとしても、極微小ながらある程度の大きさを有しており、その大きさのことを集光径といいます。ここでは、集光強度を高くすることと集光径を小さくすることは同じ意味となります。

 

注6:KB型光学ミラー

2枚の非球面ミラーを特殊な配置をすることによって、2次元的な結像を可能とするミラー。開発者Kirkpatrick(カークパトリック)とBaez(バエズ)の二人の頭文字をとって、KB(Kirkpatrick-Baez)型配置と呼れています。

注7:ナノメートルオーダー

nmの単位で表される長さや範囲のことを示します。

 

注8:回折限界

直進している光であっても小さい穴を通過した後ではそのまま直進するのではなく放射的に広がる性質を持っており、この現象を回折といいます。この性質があるために物理的に理想とするレンズを用いて光を1点に集めようとしても限界があることが知られており、このことを回折限界といいます。

 

注9:マイケルソン型位相シフト干渉計

アメリカの物理学者マイケルソンによって考案された二光束干渉計で光速度の測定に用いられます。

 

注10:フィゾー型干渉計

レーザーを光源とする干渉計で、簡単な構成で高精度の平面測定、球面測定が行えるため、最も普及している干渉計です。

 

注11:第3世代放射光施設

電磁石のないフリーな直線部を多数有する蓄積リングにアンジュレータを設置してX線領域の高輝度の放射光を発生させる施設(例:SPring-8)です。

 

注12:第4世代放射光施設

MBA(マルチベンドアクロマット)ラティス(蓄積リングを構成する磁石群の基本構造の中に電子ビームを曲げる偏向電磁石の数を従来よりも多く設置したもの)の採用による、第3世代より低エミッタンスで100倍~1000倍程度、高輝度な放射光を発生させる放射光施設(例:スウェーデンMAX IV、中国SSRF、 ブラジルSIRIUS等、またアップグレードの実施及び計画中としては日本SPring-8-IIのほか、欧州ESRF-II、米国APS-II等がある)です。

 

注13:次世代高精度集光ミラーDM-150

DM-150は写真Aにあるように150mm長さの反射表面の両側に多数の電極を有する圧電素子を配置しており、圧電素子が貼り付けられたミラー素子は、下記の図Bのように各圧電素子に電圧Vを印加することでモーメントMが発生し変形させることができます。このミラーを複数枚用いて多段で制御することで、X線ビームを任意の集光径に変化させることができ、大きなサンプルから、小さなサンプルまで光量を下げることなく、分析および測定ができるようになります。なお、DM-150においては、写真Aに示すようにX線反射面側に18チャネルの電極を有しているため、反射表面の形状を自在に変形させることが可能です。

 

(画像は省略されました)

写真A 形状可変ミラー本体DM-150   図B 形状可変ミラーの原理図

 

注14:次世代高精度集光ミラーシステム

写真Bは次世代高精度集光ミラーDM-150をKB光学配置した次世代高精度集光ミラーで、縦と横方向とそれぞれ別々に集光径可変で、焦点位置を変えることなく回折限界下で集光径を自在に変化させることができます。これにより1回のビームタイムで1つの試料に対して複数の分析手法による複合分析が可能となり、次世代ミラーの1つとして注目されております。

(画像は省略されました)

写真B 次世代高精度集光ミラーシステム

 

注15:X線光学素子

光の反射や屈折を起こさせるための部品のことを指します。例えば、ミラーは光を反射させるため、レンズは光を集めたり広げたりするため、プリズムは可視光を7つの色の光に分けるため、偏向フィルターは光の波の向きがそろっているものだけを通過させるために使用されています。

 

注16:創薬スクリーニング

新たな医薬品が製品となるまでの一連の過程を創薬と呼び、種々のアッセイ(評価)系を用いて化合物を評価し、その多くの化合物群(ライブラリー)の中から新規医薬品として有効な化合物を選択する作業のことをいいます。

 

注17:細胞培養

多細胞生物から細胞を分離し、体外で増殖、維持することで、生体外で培養されている細胞のことを培養細胞と呼び、本事業においてはこの培養細胞を培養することを細胞培養といいます。

 

注18:iPS細胞

人工多能性幹細胞(induced pluripotent stem cell)の略。京都大学山中教授が作製に成功し、皮膚細胞に特定の4つの遺伝子を導入することにより、ES細胞(胚性幹細胞)のように様々な細胞に分化・増殖できる万能細胞のことをいいます。特定の細胞や臓器に分化させることによって再生医療の可能性を拡大し、新たな遺伝子治療や薬の開発プロセスでの応用など、医学の臨床及び基礎研究の両面において、今後大きな役割を担っていくものと期待されています。

 

注19:Cell Float®技術

Cell Float®(図C参照)は、ガス交換膜を裏側に備えた円形のベッセルが、回転することで細胞に与える重力を打ち消すような培養液の流れにより、細胞組織はベッセルの底に沈むことなく、培養液中にふわふわと浮いた状態で徐々に3次元集合体を形成する培養技術で、RWV(Rotating Wall Vessel)回転培養法の一種です。

 

(画像は省略されました)

(a)装置本体部           (b)回転培養ベッセル(培養器)

図C Cell Float(CellPet 3D)

 

注20:3次元培養

細胞培養は通常、ディッシュやフラスコを用いて、平面空間上に細胞を接着させ増殖、分化させますが、平面空間上で培養した細胞は2次元シート状組織しか形成せず、培養の目的によっては、得られる細胞組織が十分な機能を持たないことがあります。再生医療のように、3次元的に損傷した組織に移植する組織を生体外で培養する場合、3次元培養による3次元組織が重要であると言われています。

 

注21:弾性軟骨

軟骨組織の一種で、外耳道軟骨、耳介軟骨、喉頭蓋軟骨、鼻軟骨などがこれに属します。軟骨基質は弾性線維で構成されているため弾力を持っています。新鮮なものは黄色く見えるため黄色弾性軟骨とも呼ばれています。

 

注22:CellPet 3D-iPS®

主にiPS細胞を立体的(3次元的)な細胞集合体として培養するための、当社が開発した独自の回転浮遊培養装置となります。この装置は培養技術としてCell Float技術(注19を参照)を適用し、また本装置に適用する培養ベッセルはiPS細胞の培養前後の処理作業を考慮し、注射器(シリンジ)型を採用しています(図D参照)。

(画像は省略されました)

図D 回転浮遊培養装置(CellPet 3D-iPS)

 

注23:スフェロイド

多細胞性球状体、多数の細胞が3次元的に集合した状態で、組織よりはるかに少ない細胞量(数十から数千個程度)の塊のことをいいます。たとえば近年、細胞を「クスリ」として投与することによる治療への期待が高まっており、生体内で細胞は、周りの細胞や細胞外基質と密接な相互作用をしていることから、細胞を三次元培養することで得られる細胞塊であるスフェロイドは、細胞の機能を最大限に引き出すことのできる投与方法として注目されています。

 

注24:CellPet FT®

培養したスフェロイド(注23を参照)または組織状の細胞に対して更なる増殖を促すため、また冷凍保存するために必要なサイズに小片化する必要があり、通常の方法である試薬や酵素による作用でなく物理的なせん断作用によって小片化するための独自の細胞小片化装置となります。適用可能な細胞種は多く、iPS細胞だけでなくその他の幹細胞、または癌細胞、組織細胞などを小片化することができます(図E参照)。

(画像は省略されました)

図E 細胞小片化装置(CellPet FT)

注25:iPS大量培養システム「CELL MEISTER®」

CellPet FT®による小片化作業を全自動で行い、iPS細胞による創薬や再生医療に必要な細胞数を実現する大量培養システムです。尚、本装置はクリーンべンチ仕様になっております。

 

注26:オルガノイド(organoid)

3次元的に試験管内 (in vitro) でつくられた臓器のこといいます。オルガノイドは、拡大しても本物そっくりの解剖学的構造を示し、実際の臓器よりも小型で単純です。これらは、組織の細胞、ES細胞またはiPS細胞から、自己複製能力および分化能力によって、3次元的な培養で自己組織化により形成され、基礎医学および医学・創薬応用に有用であるとされています。

例えば肝臓オルガノイドは薬物スクリーニングで使用するための肝臓疾患モデリングおよび、正常細胞や疾患細胞生成することが可能となります。

オルガノイドをつくり出す技術は、2010年代初めから急速に進歩しており、ザ・サイエンティスト(英語版)誌はオルガノイドを「2013年の最大の科学的進歩の1つ」に選びました。

 

注27:CellPet® CUBE

オルガノイド培養ではiPS細胞より酸素の供給が重要で、酸素供給量の優れた培養器を搭載した回転培養浮遊装置を開発しました。本培養器は当社の再生医療で使用しているCellPet 3D用の回転培養ベッセルを用いました(図F参照)

 

(画像は省略されました)

図F オルガノイド回転浮遊培養装置

(CellPet® CUBE)

 

 

3【経営者による財政状態、経営成績及びキャッシュ・フローの状況の分析】

 

(1) 経営成績等の状況の概要

当事業年度における当社の財政状態、経営成績及びキャッシュ・フロー(以下「経営成績等」という。)の状況の概要は次のとおりであります。

 

①財政状態及び経営成績の状況

当事業年度における我が国経済は、企業収益や雇用環境の改善に伴い緩やかな回復基調にありましたが、米中による保護主義的な通商政策がもたらす貿易摩擦の激化や、日韓の外交上の問題等が影響し、先行きについては不透明な状況となっております。

このような経済環境の中で当社は、オプティカル事業及びライフサイエンス・機器開発事業という独自の技術を利用した二つの事業により、前事業年度に続いて増収増益を実現いたしました。また、放射光施設用のX線ミラーの事業拡大のみならず、当社が得意とする表面加工技術や計測技術を応用し、半導体分野等その他産業分野における新事業の開拓にも注力してまいりました。

この結果、当事業年度の財政状態及び経営成績は以下のとおりとなりました。

 

a. 財政状態

当事業年度末における資産合計は、前事業年度末に比べ351,130千円増加し、2,871,547千円となりました。

当事業年度末における負債合計は、前事業年度末に比べ8,797千円増加し、423,899千円となりました。

当事業年度末における純資産合計は、前事業年度末に比べ342,333千円増加し、2,447,647千円となりました。

なお、「『税効果会計に係る会計基準』の一部改正」(企業会計基準第28号 平成30年2月16日)等を当事業年度の期首から適用しており、財政状態については遡及処理後の前事業年度末の数値で比較を行っております。

 

b. 経営成績

当事業年度の経営成績は、売上高、利益共に増加し、売上高は1,285,560千円(前期比27.3%増加)、営業利益436,507千円(前期比79.2%増加)、経常利益496,630千円(前期比77.8%増加)、当期純利益332,172千円(前期比90.3%増加)となりました。

 

セグメントごとの経営成績は次のとおりであります。

オプティカル事業は、売上高は1,186,534千円(前期比31.3%増加)、セグメント利益は715,552千円(前期比37.0%増加)となりました。

ライフサイエンス・機器開発事業は、売上高は99,025千円(前期比6.8%減少)、セグメント損失は58,977千円(前期はセグメント損失75,538千円)となりました。

 

②キャッシュ・フローの状況

当事業年度における現金及び現金同等物(以下「資金」という。)は、前事業年度末に比べ720,934千円減少し、当事業年度末には839,190千円となりました。

当事業年度における各キャッシュ・フローの状況とそれらの要因は次のとおりであります。

 

(営業活動によるキャッシュ・フロー)

営業活動の結果獲得した資金は61,466千円(前事業年度は91,823千円の獲得)となりました。これは主に、税前当期純利益495,593千円の計上、減価償却費61,321千円の計上、売上債権の増加314,169千円及び、法人税等の支払額114,594千円等によるものであります。

 

(投資活動によるキャッシュ・フロー)

投資活動の結果使用した資金は731,557千円(前事業年度は38,305千円の使用)となりました。これは主に、有形固定資産の取得による支出731,557千円等によるものであります。

 

(財務活動によるキャッシュ・フロー)

財務活動の結果使用した資金は49,198千円(前事業年度は1,206,006千円の獲得)となりました。これは主に、新株予約権の行使による株式の発行による収入10,254千円及び長期借入金の返済による支出59,360千円等によるものであります。

 

③生産、受注及び販売の実績

a. 生産実績

当事業年度の生産実績をセグメントごとに示すと、次のとおりであります。

セグメントの名称

当事業年度

(自 2018年7月1日

 至 2019年6月30日)

生産高(千円)

前年同期比(%)

オプティカル事業

271,493

166.4

ライフサイエンス・機器開発事業

102,947

199.8

合計

374,440

174.4

(注)1.金額は製造原価によっております。

2.上記の金額には、消費税等は含まれておりません。

 

b. 受注実績

当事業年度の受注実績をセグメントごとに示すと、次のとおりであります。

セグメントの名称

当事業年度

(自 2018年7月1日

 至 2019年6月30日)

受注高(千円)

前年同期比(%)

受注残高(千円)

前年同期比(%)

オプティカル事業

810,582

75.3

331,035

46.8

ライフサイエンス・機器開発事業

175,205

239.3

80,853

1,730.2

合計

985,787

85.8

411,889

57.9

(注)1.金額は販売価格によっております。

2.上記の金額には、消費税等は含まれておりません。

 

c. 販売実績

当事業年度の販売実績をセグメントごとに示すと、次のとおりであります。

セグメントの名称

当事業年度

(自 2018年7月1日

 至 2019年6月30日)

販売高(千円)

前年同期比(%)

オプティカル事業

1,186,534

131.3

ライフサイエンス・機器開発事業

99,025

93.2

合計

1,285,560

127.3

(注)1.最近2事業年度の主な相手先別の販売実績及び当該販売実績の総販売実績に対する割合は次のとおりであります。

相手先

前事業年度

(自 2017年7月1日

至 2018年6月30日)

当事業年度

(自 2018年7月1日

至 2019年6月30日)

金額(千円)

割合(%)

金額(千円)

割合(%)

FMB Oxford Limited

304,000

30.1

SLAC National Accelerator Laboratory

383,719

29.9

Shanghai Eastern Scien-Tech Machinery Import & Export Limited

229,700

17.9

National Synchrotron Radiation Research Center

130,350

10.1

(注)販売実績の総販売実績に対する割合が10%未満のものについては記載を省略しております。

 2.上記の金額には、消費税等は含まれておりません。

 

(2) 経営者の視点による経営成績等の状況に関する分析・検討内容

経営者の視点による当社の経営成績等の状況に関する認識及び分析・検討内容は次のとおりであります。

なお、文中の将来に関する事項は、当事業年度末現在において判断したものであります。

 

①重要な会計方針及び見積り

当社の財務諸表は、わが国において一般に公正妥当と認められる企業会計の基準に準拠して作成しています。これらの財務諸表の作成においては、経営者による会計方針の選択と適用を前提とし、資産・負債及び収益・費用の報告金額に影響を与える見積りを必要とします。経営者はこれらの見積りについて過去の実績や将来における発生の可能性等を勘案し合理的に判断していますが、実際の結果は、見積り特有の不確実性があるため、これらの見積りと異なる場合があります。

 

②当事業年度の経営成績等の状況に関する認識及び分析・検討内容

a. 経営成績等

1) 財政状態

(資産)

当事業年度末における流動資産は1,607,427千円となり、前事業年度末に比べ313,678千円減少いたしました。これは主に売掛金が315,682千円及び未収消費税等が68,889千円増加した一方で、新社屋建設費の支払い等により現金及び預金が720,934千円減少したことによるものであります。固定資産は1,264,119千円となり、前事業年度末に比べ664,808千円増加いたしました。これは主に機械及び装置が54,387千円増加及び、新社屋建設費の分割前払い等により建設仮勘定が614,573千円増加したことによるものであります。

この結果、総資産は、2,871,547千円となり、前事業年度末に比べ351,130千円増加いたしました。

 

(負債)

当事業年度末における流動負債は346,513千円となり、前事業年度末に比べ54,228千円増加いたしました。これは主に1年内返済予定の長期借入金が15,360千円及び未払金が11,203千円減少した一方で、未払法人税等が50,064千円及び前受金が16,309千円増加したことによるものであります。固定負債は77,386千円となり、前事業年度末に比べ45,431千円減少いたしました。これは主に長期借入金が44,000千円減少したことによるものであります。

 

(純資産)

当事業年度末における純資産合計は2,447,647千円となり、前事業年度末に比べ342,333千円増加いたしました。これは主に当期純利益332,172千円の計上によるものであります。

 

2) 経営成績

(売上高及び営業利益)

当事業年度における売上高は、前事業年度に比べて275,670千円の増収で、1,285,560千円(前期比27.3%増加)となりました。これは、ライフサイエンス・機器開発事業は減収となったものの、オプティカル事業において、放射光施設及びⅩ線自由電子レーザー施設用のⅩ線ナノ集光ミラーをはじめとする各種高精度ミラーの海外からの受注増加により大幅な増収となったことによります。このことにより、売上総利益は前事業年度に比べ189,213千円増加し、941,128千円(前期比25.2%増加)となりました。また、事業拡大に伴う人件費の増加や研究開発費の増加等があったものの、前事業年度に発生していた上場関連の費用がなくなったこと等により、当事業年度における販売費及び一般管理費は前事業年度に比べて3,670千円減少し、当事業年度における営業利益は436,507千円(前期比79.2%増加)となりました。

 

(経常利益)

営業外収益では、国立研究開発法人日本医療研究開発機構(AMED)や経済産業省による戦略的基盤技術高度化支援事業(サポイン)における補助金収入等を計上しました。また、営業外費用では、支払利息や為替差損等を計上しました。これらの結果、当事業年度における経常利益は496,630千円(前期比77.8%増加)となりました。

 

(当期純利益)

特別損失では、ライフサイエンス・機器開発事業に用いる固定資産の減損損失を計上し、法人税等の計上額も増加しました。しかしながら、経常利益が増加したこと等により、当事業年度における当期純利益は332,172千円(前期比90.3%増加)となりました。

 

3) キャッシュ・フローの状況

当事業年度のキャッシュ・フローの状況につきましては、「(1) 経営成績等の状況の概要 ②キャッシュ・フローの状況」に記載のとおりであります。

 

b. 経営成績に重要な影響を与える要因

当社は、バイオ産業分野の基礎となる、放射光施設用X線ナノ集光ミラー及び細胞培養装置等の製造分野で事業を展開しており、これら分野における研究及び産業の発展状況が経営成績に大きな影響を与えます。事業別では、オプティカル事業が世界の放射光施設の建設動向に影響され、ライフサイエンス・機器開発事業がiPS細胞を含む細胞培養の研究及び事業化動向に影響されるといえます。

当社の海外売上高比率は8割程度を占め、現地通貨で取引することが多く、為替リスクを完全に排除することは困難であり、為替相場の変動も当社の業績に影響を与えます。

主要製品である放射光施設用X線ナノ集光ミラーと各種の細胞にあわせた自動培養装置が、当社の売上の大半を占めますが、両事業に利益率の相違があるため、事業別売上高比率の変動が売上総利益及び売上総利益率に影響を与えます。

 

c. 資本の財源及び資金の流動性

当社の運転資金需要のうち主なものは、製造のための材料及び部品の購入費、人件費や研究開発費のほか、借入金の返済や法人税等の支払いです。このほか、会社の成長に必要な設備投資等を含め、収入と支出のバランスを考慮して資金運用を実施することを主たる方針としています。

一方、販売には季節的要因の影響は少ないものの、販売先の決算月に納期を指定されることや製品の受注から完成までに1年前後の期間が必要であるため、受注及び販売の状況によっては一時的な売上債権、仕入債務、たな卸資産等の増減があり、営業活動によるキャッシュ・フローの増減に影響を及ぼす可能性があります。

運転資金及び設備投資資金については、原則として自己資金で賄うこととしておりますが、多額の設備投資資金が必要となった場合は、必要資金の内容に応じて金融機関からの借り入れや資本市場からの直接調達を検討する方針であります。

なお、当事業年度末の有利子負債残高は80,826千円となっております。

 

d. セグメントごとの財政状態及び経営成績の状況に関する認識及び分析・検討内容

(オプティカル事業)

国内につきましては、大型放射光施設「SPring-8」やX線自由電子レーザー施設「SACLA」等への販売が引き続き堅調に推移しました。

海外につきましては、北米及びアジアなど海外の放射光施設への販売が伸長しました。特に、アメリカのスタンフォード大学内にあるX線自由電子レーザー施設(LCLSⅡ)向けを中心にX線ナノ集光ミラーの販売が好調であり、アジアにおいては放射光施設の新設が続く中国や、台湾の旺盛な需要を背景として販売が伸びました。さらに、ブラジル、ドイツ等の施設に対しても販売を行ってまいりました。

新しい第4世代の放射光施設の建設またはバージョンアップや、X線自由電子レーザー施設の建設が競い合って進んでいる状況にあり、特に中国での建設ラッシュが続いております。このような状況の中、今後さらに高精度ミラーの需要増大が予想されることから、新工場の稼働も含めた生産の拡大と効率化を引き続き図ってまいります。

この結果、売上高は1,186,534千円(前期比31.3%増)、セグメント利益は715,552千円(前期比37.0%増)となりました。

 

(ライフサイエンス・機器開発事業)

当社が独自に開発した培養方法であるCELLFLOAT®システムを用いた汎用型機器(CellPet 3D-iPS、CellPet FT)の販売、及び同じく汎用型機器であるCellPetⅡの販売が当初予算を割り込む結果となりました。これらの汎用型機器については、ユーザーへの浸透に時間を要すると想定して売上計画を前事業年度よりも大きく下げていたものの、浸透に想定以上の時間がかかったことにより予算をさらに下回る結果となりました。今後とも、ユーザーの皆様に本技術を広く周知しご理解いただけるように、引き続き地道な営業活動を進めてまいります。

また、機器開発案件の販売についても当初予算を大きく割り込む結果となりました。プラズマCVM技術(表面ナノ加工技術)を利用した量産向け製造装置の試作開発や、グラビア印刷試験機(GP-10)のOEM販売が業績に寄与したものの、それ以外の大手企業からの受託開発案件の進捗が滞ったことが要因であります。

このような状況の中、中長期的にはCELLFLOAT®システムを用いた汎用型機器の販売を推進するとともに、今後は機器開発事業に注力し、機器開発事業における新規事業分野の開拓に注力してまいります。

この結果、売上高は99,025千円(前期比6.8%減)、セグメント損失は58,977千円(前期はセグメント損失75,538千円)となりました。

 

 

2【事業等のリスク】

本書に記載した事業の状況、経理の状況等に関する事項のうち、投資家の判断に重大な影響を及ぼす可能性のある事項には、以下のようなものがあります。

なお、文中の将来に関する事項は、本書提出日現在において当社が判断したものであります。当社は、これらリスク発生の可能性を認識した上で、発生の回避及び発生した場合の対応に努める方針です。また、本書に記載した事項は事業等に関連するリスクを全て網羅するものではありませんので、この点ご留意下さい。

 

(1) 技術の陳腐化について

当社のオプティカル事業における製造技術は、大阪大学の独自の世界に類を見ない原子数個レベルの平坦さを実現する究極のナノ加工技術(ナノ加工技術EEMとナノ計測技術RADSI及びMSI)を基にしたもので、1ナノメートルレベルの形状精度を実現しております。本書提出日の現在においてこの状況に変化はありません。

しかしながら、将来において当社の製造方法と同等の精度レベル(本技術を超える精度は物理的に不可能)を実現する新たな製造方法が確立された場合には、価格面で影響を受け、当社の事業及び業績に影響を及ぼす可能性があります。

 

(2) 国内外政府の施策とその影響について

当社のオプティカル事業の製品である放射光施設用のX線ナノ集光ミラー等は、放射光施設という専門性の高い施設等で使用されるもので、その施設の多くは公的研究施設、公的プロジェクトまたは大学等が別々に研究事業を運営しております。当社製品を利用したこれら施設ではナノテクノロジー、バイオテクノロジーや産業利用まで幅広い最先端の研究がおこなわれており、今後も技術向上を図り、より優れた研究成果を創出し、継続していくものと予想されます。

また現在国内では東北に新しい放射光施設の新設計画(SLiT-J)が計画されたり、また海外でも中国、欧州、アメリカ、ブラジルなど新設の計画が目白押しであり、少なくとも今後20年は世界的に需要が拡大傾向にありますが、将来国内外の政府の研究事業の実施方針において、その重要度が大きく変更された場合または制度の変更があった場合には、当社の事業及び業績に影響を及ぼす可能性があります。

 

(3) 日本国政府の施策とその影響について

当社のライフサイエンス・機器開発事業の製品である各種自動細胞培養装置は、再生医療等においてiPS細胞はじめとする各種細胞を培養するものであります。これらの製品は再生医療及び創薬の研究開発用として使用され、今後もこの分野での研究開発が進み、同時に市場が拡大するものと予想しておりますが、日本国政府の施策により、関連法令等が大幅に改正された場合、または研究開発活動が法規制により制限が加えられた場合には、当社の事業及び業績に影響を及ぼす可能性があります。

 

(4) 外注先について

当社のオプティカル事業は、当社でのEEMによるナノ加工の前工程である粗加工仕上げ工程について将来的には内製化も検討しておりますが、現在外注加工業者に委託しております。当社が外部委託先を選定するにあたっては事業の継続性を鑑み、良好な協力関係の構築・維持または高い品質管理能力を主な判断材料として慎重に選定しております。

しかしながら、今後需要が急拡大し外注先で対応しきれない場合や、また新しい外注委託先が増えこれらの管理が疎かになり、品質面及び納期面等において何らかの不具合が発生した場合には、当社の業務に支障をきたし、当社の事業及び業績に影響を及ぼす可能性があります。

 

(5) 製品に関する不具合、クレームについて

当社が販売・開発する製品等に関し、ユーザー等から訴訟を提起され、または損害賠償請求を受けたことはありません。また、不具合が生じたとしても早期に発見し、かつ是正しうるよう、サポート体制を構築しておりますが、当社が販売した製品等に予期しがたい欠陥等が発生し、製品回収や損害賠償等が発生した場合、多大な損害賠償金及び訴訟費用が必要となること等により、当社の業績に影響を及ぼす可能性があります。

 

(6) 製造装置について

当社のオプティカル事業は、独自に設計・製作した製造装置を使用しております。これら製造装置については、高品質な製品の製造を実現するために、停電対策や所要のメンテナンスを随時実施しておりますが、何らかの不具合が発生した場合や自然災害や突発的な事故により製造装置が稼働不能となった場合等には、当社の業務に支障をきたし、当社の事業及び業績に影響を及ぼす可能性があります。

しかしながら、2018年6月18日に発生いたしました大阪北部地震では、震源地に近かったにもかかわらず、地盤が強固(岩盤)なため大きな揺れの影響もなく、工程の遅れや不良の発生など製造に支障をきたす事案は起こりませんでした。

 

(7) 為替リスクについて

当社は海外輸出製品が多く、為替レートの変動は外貨建ての直接取引の売上高に影響を及ぼす可能性があります。

そのため、想定を超える為替レートの変動が生じた場合には、当社の経営成績及び財政状態に影響を及ぼす可能性があります。

 

(8) 輸出について

輸出にあたり、仕向地ごとの政治や経済情勢、さらには文化や習慣等について調査・把握に努めておりますが、もしそれらが要因となる予期せぬ事件、事故等の事象が発生した場合には、当社の事業及び業績に影響を及ぼす可能性があります。

 

(9) 特定製品への依存について

当社の主力製品は、放射光施設用X線ナノ集光ミラー及びiPS細胞自動培養装置であります。このうち放射光施設用X線ナノ集光ミラーの2019年6月期における売上高は当社全体の売上高の92.3を占めております。今後につきましても、当面の間、放射光施設用X線ナノ集光ミラーが収益源になると予測しております。ただし市場の変化等によりこの市場の維持・拡大が見込めなくなった場合には、当社の事業及び業績に影響を及ぼす可能性があります。

 

(10) 業績の変動について

当社の製品であるX線ナノ集光ミラーは、その製造過程でナノ加工EEMとナノ計測RADSI及びMSIを仕様を満たすまで交互に何度か繰り返す必要があることから、製造工程は製品ごとに異なり、受注から出荷までの期間が1年程度かかります。また、稀にですが仕様を満たすために出荷予定月を過ぎることも起こり得ます。このような状況が生じた場合、当社の経営成績及び財政状態に影響を及ぼす可能性があります。

さらに、X線ナノ集光ミラーの平均的な単価は約2,000~3,000万円と高額な製品であるため、特定の四半期業績のみによって通期の業績見通しを判断することは困難であります。

 

(11) 知的財産権

当社は新たな技術や独自のノウハウを蓄積し、知的財産権として権利取得するなど法的保護に努めながら研究開発活動を推進しています。また、仮に特許侵害が試みられたとしても同様の製品が製造されないよう独自のノウハウは公開しておりません。しかし、特定地域での法的保護が得られない可能性や、当社の知的財産権が不正使用される可能性があることは否めず、さらに人材移転や悪意を前提とする情報漏洩等により技術・ノウハウが外部に流出する可能性もあります。このような状況が生じた場合、当社の経営成績及び財政状態に影響を及ぼす可能性があります。

他方、他社が有する知的財産権についても細心の注意を払っておりますが、当社が第三者の知的財産権を侵害していると司法判断された場合、当社の生産・販売の制約や損害賠償金の支払いが発生する可能性もあります。

 

(12) 情報管理

当社では、事業経営に関わる多岐に亘る重要機密情報を有しています。その管理を徹底するため、情報管理規程及び機密情報管理基準を制定し、従業員に対する教育を徹底しています。しかし、外部からのハッキングなど不測の事態による情報漏洩により、当社の信用失墜による売上高の減少または損害賠償による費用の発生等が起こることも考えられ、当社の経営成績及び財政状態に影響を及ぼす可能性があります。

 

(13) 固定資産の減損

当社では、土地、建物、機械設備等多くの有形固定資産を保有しています。当該資産から得られる将来キャッシュ・フローの見積もりに基づく残存価額の回収可能性を定期的に評価していますが、当該資産から得られる将来キャッシュ・フロー見込額が減少し、回収可能性が低下した場合、固定資産の減損を行う必要が生じ、当社の経営成績及び財政状態に影響を及ぼす可能性があります。

 

(14) 特定人物への依存について

当社の事業活動にあたり、当社代表取締役社長である津村尚史は、経営方針、経営戦略の決定及び実行においてこれまで重要な役割を果たしております。当社は現在、取締役及び主要従業員への権限移譲並びに取締役会等における情報の共有を図り、同氏に過度に依存しない組織体制の構築を進めております。

しかしながら、何らかの理由により同氏の業務遂行が困難になった場合には、当社の事業及び業績に影響を及ぼす可能性があります。

 

(15) 小規模組織であることについて(内部管理体制について)

本書提出日現在において、当社組織は、取締役6名(うち非常勤取締役2名)、監査役3名(うち非常勤監査役2名)、従業員38名と小規模であり、会社の規模に応じた相互牽制を中心とした内部管理体制や業務執行体制となっております。また、少人数であることから、各役職員への依存等の小規模組織特有の課題があると認識しております。

今後は事業の拡大に伴い、業務遂行体制の充実に努めてまいりますが、人的資源に限りがあるため、役職員に業務遂行上の支障が生じた場合、あるいは役職員が社外流出した場合には、当社の業務に支障をきたし、事業展開や経営成績に影響を及ぼす可能性があります。

 

(16) 配当政策について

当社の配当政策につきましては、当社の利益成長とそれを支える礎となる財務体質の強化が重要との認識から、業績の状況をベースに内部留保の充実と配当性向等とのバランスを図りながら、株主に対して積極的に利益還元を行うことを基本方針としております。

ただし、当面はコスト競争力の強化や生産能力向上のための設備拡充及び急成長市場での事業展開を実現するための今以上の研究開発体制の構築のための投資が重要になると考え、その原資となる内部留保の充実を図る方針であります。これらについてある一定の目処が立てば、安定的・持続的な配当による株主への利益還元政策を行う方針であるものの、現時点において配当実施の可能性及びその実施時期等については未定であります。

 

(17) 調達資金の使途について

当社の公募増資により調達しました資金の使途は、2019年7月に完成しました新社屋及び、オプティカル事業にて使用する機械装置等への設備投資への充当を計画したものであります。しかしながら、当社を取り巻く外部環境や経営環境の変化に柔軟に対応するため、上記計画以外の使途に充当する可能性があります。また、計画通りに資金を使用したとしても、期待通りの効果を上げられない可能性があります。そのような場合、当社の経営成績及び財政状態に影響を及ぼす可能性があります。

 

 

2【沿革】

当社代表取締役社長の津村尚史は、世の中にないオンリーワンの技術により製品を作り出し、広く社会に貢献することを目指し、株式会社ジェイテック(現株式会社ジェイテックコーポレーション)を設立いたしました。設立当初は、大手企業と創薬向け自動細胞培養装置の共同開発を進め、近年には再生医療及びiPS細胞関連機器の開発、製造を推進しました。

また、同時に産学連携も積極的に推進し、現在の放射光施設用X線ナノ集光ミラーの事業化を開始いたしました。本事業では、当社の自動細胞培養装置などの機器開発のノウハウを活かし、ミラー製造に関するナノ加工・ナノ計測設備を自社にて開発し、事業の高度化・効率化を図りました。現在では、放射光施設「SPring-8(Super Photon Ring-8GeV)」(以下「Spring-8」という。)やX線自由電子レーザー施設「SACLA(Spring-8 Angstrom Compact Free Electron Laser)」(以下「SACLA」という。)に代表される国内外の先端的放射光施設やX線自由電子レーザー施設への納品を継続して行っています。

 

1993年12月

大阪コンピュータ工業株式会社との共同出資により、大阪府吹田市に資本金10,000千円で株式会社ジェイテック(現株式会社ジェイテックコーポレーション)を設立。

1994年7月

バイオ自動機器(自動細胞培養装置、薬効評価装置)を開発。
大阪中小企業投資育成株式会社より出資を受け、資本金を15,000千円に増資。

1997年7月

「完全表面創成のための高濃度スラリー精製システムの研究開発」が、科学技術振興機構(現国立研究開発法人科学技術振興機構、以下「JST」という。)の1997年度独創的研究成果育成事業に採択され、大阪大学(現国立大学法人大阪大学、以下「大阪大学」という。)と共同研究を実施。

2002年7月

「プラズマCVM法による超精密バリ除去・判定装置開発」が経済産業省の2002年度創造技術研究開発事業に採択され、大阪大学と共同研究を実施。

2004年1月

資本金を40,000千円に増資。

2004年8月

神戸市中央区に本社を移転。

2005年4月

大阪大学及び独立行政法人理化学研究所(現国立研究開発法人理化学研究所、以下「理化学研究所」という。の研究成果をもとにX線ナノ集光ミラーの事業化を開始。

2005年8月

「タンパク質結晶化技術の開発」が2005年度兵庫県COEプログラム推進事業に採択され、研究を実施。

2005年12月

兵庫県知事より経営革新計画(X線集光ミラー)の承認を取得。

2006年2月

「硬X線ナノ集光用高精度楕円ミラーの実用化」が新技術開発財団の新技術開発助成に採択され、研究を実施。

2006年3月

「硬X線ナノ集光用高精度楕円ミラーの実用化」が中小企業基盤整備機構の中小企業・ベンチャー挑戦支援事業のうち事業化支援事業に採択され、研究を実施。

2006年9月

「放射光用超高精度形状大型ミラー製造技術の開発」が兵庫県の2006年度兵庫県COEプログラム推進事業に採択され、財団法人高輝度光科学研究センター(現在の公益財団法人高輝度光科学研究センター、理化学研究所の関連団体、以下「高輝度光科学研究センター」という。)、理化学研究所、大阪大学と共同研究を実施。

2006年12月

神戸市よりKOBEドリームキャッチプロジェクトによるX-KOBEに認定(X線集光ミラー)。

2007年1月

ひょうご産業活性化ファンド第2号投資事業有限責任組合(ひょうごキャピタル第2号ファンド)より出資を受け、資本金を65,000千円に増資。

2007年2月

大阪府茨木市(彩都あさぎ)に開発センターを開設。

2007年7月

「軟骨再生医療のためのGMP対応自動回転培養システムの構築」がJSTの2007年度科学技術振興機構大学発ベンチャー創出推進に採択され、独立行政法人産業技術総合研究所(現国立研究開発法人産業技術総合研究所、以下「産業技術総合研究所」という。)と共同研究を実施。

2007年9月

「放射光用超高精度形状大型ミラー製造技術の開発」が兵庫県の新産業創出支援事業(新製品・新技術:産学連携・事業連携)に採択され、研究を実施。

2009年9月

「放射光用ミラーに関する加工技術の高精度化」が経済産業省の2009年度補正予算事業戦略的基盤技術高度化支援事業に採択され、大阪大学と共同研究を実施。

 同年同月

「形成外科用自動細胞培養装置」が経済産業省の2009年度補正予算ものづくり中小企業製品開発等支援補助金(試作開発等支援事業)に採択され、研究を実施。

2010年4月

「X線ナノ集光ミラー製造プロセスに関する技術開発」がJSTの2010年度高度研究人材活用促進事業に採択され、研究を実施。

2011年2月

「放射光用ミラーに関する加工技術の高精度化」が経済産業省の2010年度予備予算事業戦略的基盤技術高度化支援事業加速枠に採択され、大阪大学と共同研究を実施。

 

 

2011年3月

「再生医療等に用いる大型軟骨組織を高効率に形成する細胞培養システムの開発」が経済産業省の2011年度第3次補正予算戦略的基盤技術高度化支援事業に採択され、大阪大学、産業技術総合研究所と共同研究を実施。

2012年5月

「放射光用X線ミラー製造の効率化のための加工及び計測技術の開発」が経済産業省の2011年度グローバル技術連携・創業支援補助金(一般枠)に採択され、大阪大学、OptiWorks株式会社と共同研究を実施。

2013年7月

「ナノ集光用焦点距離可変型ミラーの試作開発」が経済産業省の2012年度ものづくり中小企業・小規模事業者試作開発等支援補助金に採択され、大阪大学と共同研究を実施。

 同年同月

「放射光用X線長尺KBナノ集光ミラーの製造技術に関する研究」が経済産業省の2013年度中小企業経営支援等対策費補助金に採択され、大阪大学と共同研究を実施。

 同年同月

「3次元細胞培養システムによる再生医療等に用いるヒト軟骨デバイスの開発」が京浜臨海部ライフイノベーション国際戦略総合特区の2012年度課題解決型医療機器等開発事業に採択され、公立大学法人横浜市立大学(以下「横浜市立大学」という。)、産業技術総合研究所、大阪大学と共同研究を実施。

2014年6月

「iPS細胞等の3次元大量培養技術の開発」が経済産業省の2014年度戦略的基盤技術高度化支援事業に採択され、産業技術総合研究所、大阪大学と共同研究を実施。

2014年7月

「再生医療等に用いるヒト軟骨デバイスの実用化のための3次元細胞培養システムの開発・事業化」が京浜臨海部ライフイノベーション国際戦略総合特区の2014年度、2015年度医工連携事業化推進事業に採択され、横浜市立大学、産業技術総合研究所、大阪大学と共同研究を実施。

2014年10月

大阪府茨木市彩都やまぶき2丁目4番35号に新社屋を竣工し、同所に開発センターを移転。

2015年7月

「1m級長尺放射光X線ミラー用高精度成膜装置の開発」が経済産業省の2014年度補正ものづくり・商業・サービス革新補助金に係る補助金に採択され、研究を実施。

 同年同月

細胞観察機能を有したiPS細胞用自動培養装置の開発が2015年度おおさか地域創造ファンドの重点プロジェクト事業助成金に採択され、研究を実施。

2015年9月

本社を大阪府茨木市彩都やまぶき2丁目4番35号に移転。

2015年12月

OUVC1号投資事業有限責任組合<通称:OUVC1号ファンド>(無限責任組合員:大阪大学ベンチャーキャピタル株式会社)及びバイオ・サイト・キャピタル株式会社より出資を受け、資本金を139,240千円に増資。

2016年4月

大阪大学吹田キャンパス産学連携本部B棟内に細胞培養センターを開設。

2016年5月

商号を株式会社ジェイテックコーポレーションに変更。

 同年同月

中小企業庁の「はばたく中小企業・小規模事業者300社」(わざ、生産性優良)に選定。

2016年9月

「臨床試験を目指す3次元細胞培養システムを用いた革新的ヒト弾性軟骨デバイス創出」が国立研究開発法人日本医療研究開発機構(AMED)の産学連携医療イノベーション創出プログラム(ACT-M)に採択され、横浜市立大学、地方独立行政法人神奈川県立病院機構神奈川県立こども医療センターと共同研究を開始。

2017年8月

「iPS細胞等幹細胞の高効率な継代作業を実現した3次元大量継代培養自動化技術の実用化開発」が経済産業省の2017年度戦略的基盤技術高度化支援事業に採択され、大阪大学と共同研究を実施。(2017~2019年度)

 同年同月

「回折限界下で集光径可変な次世代高精度集光ミラーの製造技術の開発」が2017年度兵庫県最先端技術研究事業(COEプログラム)に採択され、大阪大学、理化学研究所、高輝度光科学研究センターと共同研究を実施。

2018年2月

東京証券取引所マザーズに株式を上場。

2019年7月

大阪府茨木市彩都やまぶき2丁目5番38号に新社屋を竣工し、同所に本社/開発センターを移転。

(5)【所有者別状況】

 

 

 

 

 

 

 

2019年6月30日現在

区分

株式の状況(1単元の株式数100株)

単元未満株式の状況

(株) (注)

政府及び地方公共団体

金融機関

金融商品取引業者

その他の法人

外国法人等

個人その他

個人以外

個人

株主数(人)

4

14

73

15

5

3,796

3,907

所有株式数

(単元)

3,729

368

4,569

326

28

49,325

58,345

1,500

所有株式数の割合(%)

6.39

0.63

7.83

0.56

0.05

84.54

100

(注)自己株式20株は、「単元未満株式の状況」に含まれております。

 

3【配当政策】

当社は、利益配分につきましては、将来の事業展開と経営体質の強化のために必要な内部留保を確保しつつ、安定した配当を継続して実施していくことを基本方針としております。

当社は、期末配当のみの年1回の剰余金の配当を行うことを基本方針としております。

当社は、会社法第454条第5項に規定する中間配当をすることができる旨及び同法第459条第1項の規定に基づき取締役会の決議をもって剰余金の配当等を行うことができる旨定款に定めております。

内部留保資金につきましては、今後予想される経営環境の変化に対応すべく、今まで以上にコスト競争力を高め、市場ニーズに応える技術・製造開発体制を強化し、さらに市場占有率を高めるために有効投資を行ってまいりたいと考えております。

なお、当事業年度の配当につきましては、当期純利益を計上いたしましたが、経営体質及び今後の事業展開、内部留保の充実を図るために、無配といたしました。当面は、コスト競争力の強化や生産能力向上のための設備拡充、及び急成長市場での事業展開を実現するために今以上の研究開発体制を構築するための投資が重要になると考え、その原資となる内部留保の充実を図る方針であります。ただし、これらにある一定の目処が立てば、安定的・持続的な配当による株主様への利益還元政策をとる方針であります。

 

(2)【役員の状況】

① 役員一覧

男性9名 女性-名 (役員のうち女性の比率-%)

役職名

氏名

生年月日

略歴

任期

所有株式数

(千株)

代表取締役社長

津村 尚史

1957年4月25日

1981年4月 倉敷紡績株式会社入社

1991年4月 株式会社片岡実業入社取締役技術部長就任

1993年12月 当社設立代表取締役社長就任(現任)

(注)3

3,272

取締役

営業部長

上田 昭彦

1958年1月13日

1981年4月 倉敷紡績株式会社入社

1986年11月 西尾工芸工業株式会社入社工場長

1997年7月 株式会社テクノ高槻入社フィリピン工場長

2002年11月 同社海外営業部長

2004年11月 株式会社トラストワークスサンエー(現株式会社トラスト・テック)入社専務取締役就任

2006年2月 株式会社アイアム(現株式会社インターワークス)入社大阪支社長

2011年2月 当社入社海外営業部長

2014年12月 当社取締役就任(現任)

2015年10月 当社営業本部長

2017年4月 当社オプティカル営業部長

2018年7月 当社営業部長(現任)

(注)3

26

取締役

製造部長

岡田 浩巳

1970年1月26日

2000年4月 株式会社シリコンテクノロジー入社

2004年4月 当社入社

2014年10月 当社オプティカル研究開発部長

2014年12月 当社取締役就任(現任)

2018年7月 当社製造部長(現任)

(注)3

26

取締役

管理部長

平井 靖人

1976年6月19日

2003年5月 株式会社あさひ入社

2005年11月 大研医器株式会社入社

2011年11月 株式会社サンワカンパニー入社

2012年9月 同社取締役管理部長就任

2015年10月 株式会社ナサホーム入社

2016年6月 同社取締役管理本部長就任

2016年12月 当社入社上場準備室長

2017年1月 当社管理部長(現任)

2017年6月 当社取締役就任(現任)

(注)3

10

取締役

川﨑 望

1950年7月22日

1972年4月 松下電器産業株式会社(現パナソニック株式会社)入社

1972年10月 松下電子工業株式会社(現パナソニック株式会社)半導体事業部出向

1977年8月 株式会社コンテック(現大阪コンピュータ工業株式会社)設立代表取締役就任(現任)

1979年4月 株式会社テクノ高槻入社代表取締役社長就任(現任)

1993年12月 当社取締役就任(現任)

(注)3

410

(注)5

 

 

役職名

氏名

生年月日

略歴

任期

所有株式数

(千株)

取締役

松見 芳男

1946年9月1日

1969年4月 伊藤忠商事株式会社入社

1994年1月 伊藤忠インターナショナル会社Development&Venture部長

1997年4月 同社宇宙情報部門長

2000年1月 伊藤忠商事株式会社宇宙情報マルチメディアカンパニーバイスプレジデント

2004年6月 同社執行役員先端技術戦略室長

2007年7月 同社顧問伊藤忠先端技術戦略研究所長

2009年4月 同社理事(現任)

2009年4月 松見アソシエイツ合同会社代表取締役就任(現任)

2014年12月 大阪大学ベンチャーキャピタル株式会社代表取締役社長就任

2017年7月 同社相談役

2018年9月 当社取締役就任(現任)

(注)3

常勤監査役

尾方 勝

1954年3月10日

1979年4月 日興證券株式会社(現SMBC日興証券株式会社)入社 日興リサーチセンター株式会社出向

1985年8月 日興證券株式会社(現SMBC日興証券株式会社)復職

1999年4月 日本ベンチャーキャピタル株式会社入社

2004年11月 株式会社エニーズ入社取締役管理本部長就任

2005年8月 亜細亜証券印刷株式会社(現株式会社プロネクサス)入社

2013年10月 株式会社尾方事務所設立代表取締役就任(現任)

2014年9月 当社監査役就任(現任)

(注)4

12

監査役

西田 隆郎

1949年5月20日

1974年9月 デロイトハスキンズアンドセルズ公認会計士事務所入所

1977年11月 西田博税理士事務所入所

2002年1月 税理士西田隆郎事務所設立所長就任(現任)

2014年12月 当社監査役就任(現任)

(注)4

1

監査役

野村 公平

1948年5月12日

1975年4月 弁護士登録

1977年4月 西川・野村合同法律事務所(現野村総合法律事務所)入所(現任)

1999年4月 大阪府弁護士会副会長就任

2015年9月 当社監査役就任(現任)

(注)4

1

3,758

(注)1.取締役 川﨑望、松見芳男は、社外取締役であります。

2.監査役 尾方勝、西田隆郎、野村公平は、社外監査役であります。

3.2019年9月26日開催の定時株主総会終結の時から、選任後1年以内に終了する事業年度のうち、最終のものに関する定時株主総会終結の時までであります。

4.2016年11月11日開催の臨時株主総会終結の時から、選任後4年以内に終了する事業年度のうち、最終のものに関する定時株主総会終結の時までであります。

5.取締役 川﨑望により総株主の議決権の過半数が所有されている会社の持分を含めた実質所有株式数を記載しております。

② 社外役員の状況

当社の社外取締役は2名、社外監査役は3名であります。

社外取締役の川﨑望は、同氏が経営する会社の代表取締役社長経験者としての豊富な経験と高い見識を活かして、監督・提言を行っております。

当社と同氏との関係は、同氏が代表取締役を務める大阪コンピュータ工業株式会社が当社の創業時の共同出資者であり、本書提出日現在において、同氏と同社とで当社の普通株式410,000株を保有(うち同社を通した間接保有分360,000株)しております。その他には、当社と同氏との間には、人的関係または取引関係その他の利害関係はありません。

社外取締役の松見芳男は、大手商社及び、ベンチャーキャピタルの代表取締役社長経験者としての豊富な経験と高い見識を活かして、監督・提言を行っております。

社外監査役の尾方勝は、上場会社を中心とした企業での管理職としての経験、証券アナリスト(公益社団法人日本証券アナリスト協会検定会員)としての経験と見識、ベンチャーキャピタルにおけるベンチャー投資の経験を活かして、当社の監査体制の充実に努めております。

当社と同氏との関係は、同氏は2014年4月~9月において当社のコンサルティングを行っていた株式会社尾方事務所の代表取締役でありますが、現在は同社との取引関係はありません。同氏は本書提出日現在において、当社の普通株式12,000株及び新株予約権2個(2,000株)を所有しておりますが、重要性はないものと判断しております。その他には、当社と同氏との間には、人的、資本的関係または取引関係その他の利害関係はありません。

社外監査役の西田隆郎は、税理士としての専門知識・経験等を活かして、当社の監査体制の充実に努めております。

当社と同氏との関係は、同氏は2014年12月まで当社の顧問税理士でありましたが、現在は取引関係はありません。同氏は本書提出日現在において、当社の普通株式1,000株及び新株予約権4個(4,000株)を所有しておりますが、重要性はないものと判断しております。その他には、当社と同氏との間には、人的、資本的関係または取引関係その他の利害関係はありません。

社外監査役の野村公平は、弁護士としての専門知識・経験等を活かして、当社の監査体制の充実に努めております。

同氏は本書提出日現在において、当社の普通株式1,000株及び新株予約権4個(4,000株)を所有しておりますが、重要性はないものと判断しております。その他には、当社と同氏との間には、人的または資本的関係はありません。

当社は、社外取締役または社外監査役を選任するための独立性に関する基準または方針として明確に定めたものはありませんが、選任にあたっては、東京証券取引所の独立役員の独立性に関する判断基準及び経歴や当社との関係を踏まえて、当社経営陣からの独立した立場で社外役員としての職務を遂行できる十分な独立性が確保できることを前提に判断しております。

 

③ 社外取締役又は社外監査役による監督又は監査と内部監査、監査役監査及び会計監査との相互連携並びに内部統制部門との関係

社外取締役は、取締役会に出席して必要に応じ意見を述べるほか、適宜、監査役と相互の情報連携を行う等、取締役の業務執行を監督しております。外部講師を招いての勉強会開催時に参加して最新情勢の情報収集に努めるとともに、各役員との個別の面談を行いコミュニケーションを図るなど、外部の視点から経営上の監督や助言を行っております。

社外監査役は、常勤監査役とともに取締役会の意思決定と取締役の業務執行を監督および監視しております。取締役会に出席して必要に応じ意見を述べるほか、常勤監査役が実施する取締役との面談、各部門の往査、重要決裁書類の閲覧結果を共有し、また、会計監査人による会計監査講評に同席することにより、監査に役立てております。

 

 

4【関係会社の状況】

該当事項はありません。

 

【製造原価明細書】

 

 

前事業年度

(自 2017年7月1日

至 2018年6月30日)

当事業年度

(自 2018年7月1日

至 2019年6月30日)

区分

注記

番号

金額(千円)

構成比

(%)

金額(千円)

構成比

(%)

Ⅰ材料費

 

128,438

39.5

241,129

51.5

Ⅱ労務費

 

138,262

42.6

170,790

36.5

Ⅲ経費

※1

58,236

17.9

56,000

12.0

当期総製造費用

 

324,938

100.0

467,919

100.0

期首仕掛品たな卸高

 

65,283

 

12,043

 

合計

 

390,221

 

479,962

 

期末仕掛品たな卸高

 

12,043

 

64,188

 

他勘定振替高

※2

110,268

 

93,479

 

受注損失引当金繰入額

 

-

 

5,784

 

当期製品製造原価

 

267,909

 

328,080

 

原価計算の方法

  原価計算の方法は、個別原価計算であります。

  (注)※1.主な内訳は次のとおりであります。

項目

前事業年度

(自  2017年7月1日

至  2018年6月30日)

当事業年度

(自  2018年7月1日

至  2019年6月30日)

減価償却費(千円)

46,795

50,146

 

※2.他勘定振替高の内訳は次のとおりであります。

項目

前事業年度

(自  2017年7月1日

至  2018年6月30日)

当事業年度

(自  2018年7月1日

至  2019年6月30日)

研究開発費(千円)

80,505

92,890

その他(千円)

29,762

588

合計(千円)

110,268

93,479

※ 販売費及び一般管理費のうち主要な費目及び金額は次のとおりであります。

 

前第2四半期累計期間

(自 2018年7月1日

  至 2018年12月31日)

当第2四半期累計期間

(自 2019年7月1日

  至 2019年12月31日)

役員報酬

40,653千円

45,213千円

従業員給料及び手当

27,263

35,008

賞与引当金繰入額

3,676

5,712

研究開発費

110,015

130,313

減価償却費

4,617

14,010

1【設備投資等の概要】

当事業年度の設備投資額は総額で730,577千円であり、主に新社屋の建設費及びオプティカル事業に係るX線ナノ集光ミラー製造用の加工装置や測定器の購入費用であります。

なお、当事業年度において重要な設備の除却、売却等はありません。

 

株価(1年)
期間を変更
PER(1年/会予)
期間を変更

その他企業情報

企業価値18,253 百万円
純有利子負債-571 百万円
EBITDA・会予308 百万円
株数(自己株控除後)5,854,934 株
設備投資額N/A
減価償却費93 百万円
のれん償却費N/A
研究開発費N/A
代表者代表取締役社長  津村 尚史
資本金821 百万円
住所大阪府茨木市彩都やまぶき2丁目5番38号
会社HPhttps://www.j-tec.co.jp/

類似企業比較